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AVERAGE EQUIDISTRIBUTION PROPERTIES OF 
COMPOUND NONLINEAR CONGRUENTIAL 

PSEUDORANDOM NUMBERS 

JURGEN EICHENAUER-HERRMANN AND GERHARD LARCHER 

ABSTRACT. The present paper deals with the compound nonlinear congruen- 
tial method for generating uniform pseudorandom numbers, which has been 
introduced recently. Equidistribution properties of the generated sequences 
over parts of the period are studied, based on the discrepancy of the corre- 
sponding point sets. Upper and lower bounds for the average value of these 
discrepancies are established, which are essentially best possible. These re- 
sults show that the average equidistribution behavior of compound nonlinear 
congruential pseudorandom numbers fits well the equidistribution properties 
of true random numbers. The method of proof relies heavily on estimates of 
the average value of incomplete exponential sums. 

1. INTRODUCTION 

Several nonlinear methods of generating uniform pseudorandom numbers in the 
interval [0,1) have been introduced and studied during the last years. The develop- 
ment of this field of research is described in the survey articles [2, 5, 10, 11, 13] and 
in Niederreiter's excellent monograph [12]. A particularly attractive approach is the 
general nonlinear congruential method. The generated sequences of pseudorandom 
numbers have nice equidistribution and statistical independence properties [3, 8, 9]. 
Recently, the following compound version of this method, which shows additional 
computational advantages, has been introduced and analyzed in [4, 6, 7]. 

Let P1,... ,Pr > 5 be arbitrary distinct primes. For 1 < i < r identify Zpi = 

{0, 1, ... , pi - 1} with the finite field of order pi. Let fi : Z Pi be a permutation 
polynomial of ZPi and let (xn$i))n>0 with 

n() = fi(n)rpi E [0I1) n > 0 

be the corresponding stream of (ordinary) nonlinear congruential pseudorandom 
numbers. A sequence (xn)n>o of compound nonlinear congruential pseudorandom 
numbers in the interval [0, 1) is defined by 

xn = x ?x) + + X$[) (mod1), n > 0. 
Since the primes P1, . . . , Pr are distinct and fl,... , fr are permutation polynomi- 
als, the sequence (xn)n>o is purely periodic with period length m = P ... Pr, and 
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xo0 x1, ... I xm- 1 run through all rationals in [0, 1) with denominator m. It should 
be observed that in the compound nonlinear congruential method a very large pe- 
riod length m can be obtained, although exact integer computations have to be 
performed only in ZP1' , i.z Additionally, the compound approach is partic- 
ularly suitable for parallel computations, since the computation of the underlying 
sequences (x$) )n>o of (ordinary) nonlinear congruential pseudorandom numbers 
can be allocated to r parallel processors. 

Equidistribution properties of the sequence (xn)n>o can be analyzed based on the 
discrepancy of its first N terms. The discrepancy of N arbitrary points to, t1, .... 
tNl E [0,1) is defined by 

DN(tO,tl, ,tN-1) = sup IFN([a,/3)) - (/3 - a) 
O<ax<OB<l 

where FN([a,/3)) is N1 times the number of points among to, t1,... ,tN-1 falling 
into the interval [ae,3). For a sequence (xn)n>o of compound nonlinear congruential 
pseudorandom numbers the abbreviation 

DN;fl...fr = DN(XO,Xl, ... ,XN-1) 

will be used. The present paper deals with the average equidistribution behavior 
of compound nonlinear congruential pseudorandom numbers. In the third section, 
upper and lower bounds for the average value of the discrepancy DN;fl. fr are 
established. A detailed discussion of these results is given in the fourth section. 
The second section contains several auxiliary results. 

2. AUXILIARY RESULTS 

First, some further notation is necessary. For an integer q > 2, let C(q) be the 
set of all nonzero integers h with -q/2 < h < q/2 and define r(h, q) = q sin(7rlhl/q) 
for h E C(q). For real t, the abbreviation e(t) = e2Jit is used. The following three 
results can be deduced from [12, Theorem 3.10 and Corollary 3.17] and [4, Proof 
of Theorem 1], respectively. 

Lemma 1. Let N > 1 and q > 2 be integers. Let tn = Yn/q E [0, 1), with Yn E 
{o, 1,. .. , q-1} forO < n < N. Then the discrepancy of the points to, ti,... , tN1 

satisfies 

DN(to,tl, ,tN-1) < >i+ i e(htn)_ N 
q 

hcC(q) 
r (, q) n=O 

Lemma 2. The discrepancy of N arbitrary points to, t1, ... , tN_I E [0, 1) satisfies 

- 1 N-i 
DN (to, tl, ***,tN-1) > 2NI hI E e (htn)| 

for any nonzero integer h. 

Lemma 3. Let q > 2 be an integer. Then 

hEC(q) (h ) d (o 5 

h_O (mod d) 

for any divisor d of q with 1 < d < q. 
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Later on, Holder's inequality will be used in the following form. 

Lemma 4. Let a1, a2,... , aq be q arbitrary real numbers. Then 

Proof. First, observe ta = IajI2/3IajI4/3 for 1 < j < q. Hence, Holder's 
inequality (with u = 3/2 and v = 3) implies that qq 

Prof F Kr (sato 2/3)s) (t (iat423) ) a= jiaji) C ee ) ' 

which yields the desired result. O 

In the following, let , = ZPt \{O} for 1 < i < r, and let mI HncI pi for subsets 
I of {1,... , r}. For -yi E Z*. and any permutation polynomial gi: Z -* Z denote 
by -yigi the permutation polynomial fi: Z -* 2P with fi(z) -='yigi(z) (mocfpi). 

Lemma 5. Let 1 < N < m, h E C(m), and J = {1 < i < r I h- 0 (modpi)}. 
Then 

S Z e (h E yigi(n)/pi) < N(m-N) f(pi-1). 
( y.)cE2* x...xZ* n=O i=1/ icJ 

Proof. Let Jc = {1,.. ., r} \ J. Then straightforward calculations show that 

N-1 /r \ 2 

S | , e (h E 5 igi (n)/pp)| 
( -Y.y) CE* x... xZ* n=O i= 1 

N-1( ) 2 

i(E J vi (E*i) iciJc n=0 ic Jc =fl(p~~~~~-1) S-1 

<?l(pi-1) ( z :e (hSYigi(n)/pi)2 -N2) 

ic J -y,E ,iciJc n=0 ic Jc 

= 1(Pi - 1) ( : 1 H e (hty(gi(n) -gi(k))/P)-N 2) 
ic - k,n=O icJc -YcZpt 

= fl(Pi-1)(mJc * #{(k,rn) E 2 J gi(n) =gi(k), i E JC} - N2) 
icJ 

= fl(pi - i)(mc* #{(k,n) E Z2 I n = k (mod mjc)} -N2 
icJ 

where ZN = {,0 1,... , N - 1}. Let NJC E Zmjc , with NjC -N (mod mjc), and 
observe that mjc [N/mjc J = N - NC, where [xJ means the greatest integer less 
than or equal to x. Then 

mijc #{(k,n) E 2 n_k (mod mjc)} 

= MJc (LN/mjcI(N + NJC) + NC) = (N - IJc)(Y + NJC) + micc. 
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Hence, 

N-1 /r \ 2 

S |5, e (h yigi (n) /pi) 
(-yl,..<-Yr)cZ1x... xz; n=0 i= / 

< fl(pi -1) ((N - Nj-)(N + NJC) + mjcNjc - N2) 
icJ 

= Njc(mjc - Nj-) fl(pi -1) 
icJ 

< N(m-N) f(pi-1), 
iCJ 

which is the desired result. D 

The following result is the special case s = 1 of [7, Lemma 6]. 

Lemma 6. Let 1 < N < 2-(r+l) flJ I1(pi - 1). Then 

(pi 1() 
(-Yl, .............x... xrz* I Zp n=0 (i=1 2.............. 

Lemma 7. Let r =1 and 1 < N < m. Then 

N-i 2 

rn-i E | e(7xigj(n)/m) N(m -N) 
-yic 2z n=0 r 

Proof. It follows at once from the proof of Lemma 5 that, for r = 1 and h = 1, 
equality holds in Lemma 5. This yields the desired result. D 

For an integer b > 1, let Zb = {O,1,.. , b- 1} and define 

Tb(l) = {(k, 1, h, n) E 42 k, 1, h, n distinct or k = 1 and k, h, n distinct 

or h = n and k, 1, h distinct}, 

Tb(2) = {(k, 1, h, n) E 42 k = h, 1 $r n or k = n, 1 $& h or k $ h, 1 = n 

ork$rn, 1=hork=11 h=nh , 

and 

Tb(3)={(k,1,h, n)E4jk=h, 1--nork=n, l=h}. 

Lemma 8. Let 1 < N < m, and let {JI, J2, J3} be a partition of {1,... , r}, where 
it is allowed that some of the sets JI, J2, J3 are empty. Then 

#{(k, 1, h, n) E Z4N I (k, 1, h, n) (modpi) E Tp, (j), i E Jj, I < j < 3} 

< 6#J22#J3 (4N2 + 3N 3 + N 4 P PiJ 
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Proof. Let L = {L1,... ,L6} be a partition of J2 and let M = {M1,M2} be 
a partition of J3, where again it is allowed that some of the sets L1,... ,L6 
and M1,M2 are empty. Let Qi = IjcLJPj1 Ri = I7jcMMpj, and V(L,M) = 
{(k,l,h,n) E Z4 I k 1_ (modQj), h n (modQ2), k _ h (modQ3Rj), 1 
h (modQ4R2), k n (modQ5R2), 1 n (modQ6Ri)}. Then #{(k,l,h,n) E 
Z4 I (k, 1, h,n) (modpi) E Tp(j), i E Jj, ? < j < 3} is at most M #V(L,A), 
where the summation is extended over all partitions L2 and M of the form described 
above. It follows from the Chinese Remainder Theorem that, for given L1, M and 
fixed k, 1, h, the number of (k, 1, h, n) E V(L, M) is at most FN/(Q2Q5Q6R1R2)1, 
where Fxl means the least integer larger than or equal to x. Further, for given L, M 
and fixed k, 1, the number of h for which there exist n with (k, 1, h, n) E V(L, M) is 
at most FN/(Q3Q4RiR2)1. Finally, for given L1, M and fixed k, the number of 1 for 
which there exist h and n with (k, 1, h, n) E V(1, M) is at most EN/Ql]. Therefore, 

#V(1,M) ? N ( N + i) (Q3Q4R>R2 + 1) Q6RR2 

< 4N 2? 
3 

N 3+ N 4 
RfR2 (ff3 Qi)(R1R2)2 

and the desired result follows. O 

Lemma 9. Let 1 < N < m. Then 

1 fe(~ f(n)/pi) 
rf p! E e S f_(n)pi < 4.84 (12.27)rN2, 

Hi,p.fj,...,fr O = 

where the summation is extended over all permutation polynomials fi: Z ZPi of 
zPi with 1 < i < r. 

Proof. For any z E Zb with b > 5 and (fixed) integers k, 1, h, n, let Ab(z) be the 
number of permutation polynomials f: Z - Zb Of Zb with f (k)+f (l)-f (h)-f (n)-- 
z (modb). Obviously, Ab(z) = Ab(1) for any z $0, Ab(0) + (b- 1)Ab(1) = b!, and 

b(b - 3)(b -3)! for (k, 1, h, n) (mod b) E Tb (1), 
Ab(1) = b(b-2)! for (k, 1, h, n) (mod b) E Tb(2), 

t 0 for (k, 1, h, n) (mod b) E Tb(3), 

which implies that 

5 Ab(z)e(z/b) = Ab(O) - Ab(l) = b!- bAb(l) 
zEZb 

2b(b-3)! for (k, 1, h, n) (mod b) E Tb (1), 
-b(b-2)! for (k, 1, h, n) (mod b) "ETb (2), 

b b! for (k 1, lh,<n) (modb) E Tb(3). 
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Hence, 

N-1 r \ 
4 

n = p n k,1,=h,n=O 2=1 Z1Z N- 1 r 

_ Sj7 II 1 A (z)e(z/pj) 

k,l,h,ni=O i=l P z2! 
N-1 r N-1 

J1J,3k,l,h,n=O i=Pi1(P-2 Pi! -1 
N-i 2 

- S S~ ~~ FJ(pi -1) (pi -2) rlpi -l 
Jl, J2, J3 0,,,= 2cJi iC J2 

(k,l,h,n) (mod pi) (Tpi (j), 
iCJj, 1<j<3 

where the summation over J1, J2, J3 is extended over all partitions {Jl, J2, J3} Of 
{1,... ., r}. Now, Lemma 8 can be used in order to obtain 

< 2= 5fl fi(n)/p3 

Jl,J2,J3 C Jl i2 J2 

2 tE3 4ttJ t E3P 4N + 3N- I + NP f n ) 

r ~~~~~3 

+ fl(~pi - 1) (pi-2 p --1 i 
2= 1 2 

1 

+N 
-__ -P 2 + 3P2 +1)) 

(22 (23) r1 + 31 (71)r1 + 41) (92)T1 

445 (184 ) 
< I N2 

- 92 \\15, 

which yields the desired result. L 

Lemma 10. Let r 1 and 1 < N < m. Then 

N-1,(l()/) 
4 

2N (m-)2 

mn! n= m(m -1) 

where the summation is extended over all permutation polynomials fi 2 -?m of 
zm. 
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Proof. It follows from the proof of Lemma 9 that 

1 N-i 1 N-i 

1: f,(n /m! S: S Am,(z)e(z/m) 
fi n=O k,l,h,n=O zEZm 

2 1 
#TN(1) - __ #TN(2) + #TN(3) 

(m -1)(m -2) 1 
2N(N-1)2(N-2) _ N(N-1)(4N-3) +N(2N -1) 

(m-1)(m-2) mr-I 
2N 2(m - N)2 - mN(m - N) < 2N2(m - N)2 

(m-1)(m-2) - m(m-1) 

3. MAIN RESULTS 

Theorem 1. Let 1 < N < m. Then the average value of the discrepancy 
DN;,yjgj,..yrg, in the compound nonlinear congruential method over (iY, - r) E 

ZP1 X * X Z* satisfies 

1 
- 1) DN;yll.. . .. yrgr 

Pi r)C 
PiXXZr 

< (10)N-1/2 (1 _lN)(2logm+ )+ ? 

Proof. First, Lemma 1 is applied with q = m and tn = xn for 0 < n < N. This 
yields 

1 
DN;,ylgl,..Yg 

l~~~i ~P 1r 
1 

_l ? 1) -.rcZixz 1)e (hDN;/1i(n)*/Pi)r) 
m N r(h m) 

Hr=i(P -1) (*. )CZx -x7 * :Ee (h?yigi(n)/Pi) 2) 

S 1 1 

J-{.r} hmC(m) N( ) m 
fi=1 (pi ( 1) 

-Y),E* x ..xZ* n=O i=l 

J{,.,}hEC(m) 
r(h, m) 

#J<r h _O (modpn), iCJ 
h$O (mod pi), il J 

j H rZ=1 (Pi -1) (y1.yr)c7ix..x7r 5 e (h E ? /igi (n)/Pi) 
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where the penultimate step follows from Schwarz's inequality. Now, Lemma 5 can 
be used in order to obtain 

1 D 
- 1) ~~~~~~DN;,ylgi)...)r 

=1(Pi 1)(-1 ... ..)EZ*l X ... XZ* 
Pr 

<1+ !(I? 1__ 
m (N mJJc l.r} hEC(m) r(h,m) Jl,iJ Pip 1 

icf 1'... Irl hEC(m)iEJ i=1 
#J<r h=O (modpi),iEJ i 

h$O (mod pi), ilJ 

Hence, it follows from Lemma 3 that 

rlr 
( - 
1 ) S DN;1yi gi.... )Yrgr 

( p 1 (-Y1-.- Yr)E7*l X... XZ 

< ( m ( I S }ogm+ S 
N \m /\7r 5/ c JC{1.r \/Pii=i Pi l 

#J<r i#J 

< 
I 

+ I - 
N 

72logm+ 
2 I 

+ 

< + - (_ )_logm +) (.+ 2 )5 

which yields the desired result. 

Theorem 2. Let 1 < N < m and fix the permutation polynomials gi, . .. , g9 . Let 
O < Ol < 1. Then there exist more than (1-cx) r]l 1 (pi -1) values of (-y,... ,Yr) E 
Z* X ... x 2* -such that the discrepancy DN;,yjgj,...,'Yr9r in the compound nonlinear Pi Pr 

congruential method satisfies 

DN;<yi gi)... y(7r/gr)<r N-1/2 (1 N) (2 logm+.2)+ I). 

Proof. Let 

(7 V'f5 l ( N'\1/2 (2 2\ 1 M= 10 )N-1/2 1 -) -logm+ 2) + 

and suppose that there exist at most (1 - a) I1 (pi - 1) values of (-1, , Yr) E 
x ... X Zr with DN;,y191i..-Yr9r < a-M, i.e., there exist at least aff (Pi(-1) 

values of (.yj,Yr) E Z* x ... x Z* with DN;,y1gj,...,,y,g, > ce-1M. Hence, one 
obtains 

r 

S? DN;/yi gi ... )Yr9r > M (pi - 1), 
(Y,.Yr)EZ* x .xZ i=l 

which contradicts Theorem 1. E 

Theorem 3. Let 1 < N < 2-(r+1) flr=(pi - 1). Then the average value of the 
discrepancy DN;f,,...,f, in the compound nonlinear congruential method over all 
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permutation polynomials fi: Z 2ps of Zpi with 1 < i < r satisfies 

1r I E DN;f. fr > 12 45N- S1= i 124 (3.51)r 

Proof. First, Lemma 2 is applied with t, = x? for 0 < n < N and h = 1. This 
yields 

f LN;f. fr?2NHrp! n=0 i= 1/ 

. E e fi (n) /pi 

(n^=l pi! f Ef E ( fi (n) /pi) 

where the last inequality follows from Lemma 4. Finally, Lemmas 6 and 9 can be 
used in order to obtain 

ffl11pi! S DN;f. > 2N_(INN (4.84. (12.27)rN2)/ 
1X=jP. l... JX rN 

12.45. (3.51)r 
which completes the proof. D 

Theorem 4. Let r = 1 and 1 < N < m. Then the average value of the discrep- 
ancy DN;fj in the (ordinary) nonlinear congruential method over all permutation 
polynomials fi: Z - 7Zm of Zm satisfies 

m!DN;f > i1 N-1/2 1 
fi 2Vm 

Proof. The desired estimate follows as in the proof of Theorem 3, where Lemmas 7 
and 10 are used instead of Lemmas 6 and 9, respectively. D 

4. DISCUSSION 

First, note that the results of the present paper apply for the ordinary nonlin- 
ear congruential method (r = 1) as well as for the compound method (r > 2). 
In the following, let the number r of prime factors of m be fixed. Then The- 
orem 1 shows that for any permutation polynomials gl,... ,gr the discrepancy 
DNylgl....yrgr, on the average over -y,l... ,Yr, has an order of magnitude at most 
N- 1/2(I-_N/rM)1/2 logiM. If N is not too large, this result is basically in ac- 
cordance with the law of the iterated logarithm for the discrepancy of N true 
random numbers from [0,1), which is almost always of the order of magnitude 
N-1/2(loglogN)1/2 (cf. [1]). Of course, the upper bound in Theorem 1 remains 
valid for the average value of the discrepancy DN;fl, ,f over all permutation poly- 
nomials fl,... , fr. Theorem 2 provides even more information, since it implies that 
for any permutation polynomials gl, . ., gr only an arbitrarily small percentage of 
the parameters -jY,... yr may lead to a discrepancy D6N;aygl ...g of an order of 
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magnitude greater than N-1/2(1 - N/m)1/2 logim. On the other hand, Theorem 3 
shows that the average value of the discrepancy DN;f,,..f, over all permutation 
polynomials fl,. .. ., fr is of an order of magnitude at least N-1/2, provided N is 
not too large, which implies that the upper bound in Theorem 1 is in general best 
possible up to the logarithmic factor. Finally, Theorem 4 yields a slightly improved 
version of the lower bound in case of the ordinary nonlinear congruential method. 
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